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1. INTRODUCTION

Suppose + is a positive probability measure on a compact set on the real
line, that is, + is a positive Borel measure with � d+=1. Then there is a
unique sequence of polynomials

pn(x)=knxn+ } } } , kn>0 (n # Z+=[0, 1, ...])

such that

| pm(x) pn(x) d+(x)=$mn (m, n # Z+).

These orthonormal polynomials satisfy a three-term recurrence relation

xpn(x)=an+1 pn+1(x)+bn pn(x)+an pn&1(x) (n # Z+) (1.1)

with the initial conditions

p&1(x)=0, p0(x)=1, a0=0, (1.2)

where an+1=kn�kn+1>0 and bn # R.
Conversely, by Favard's Theorem, if the polynomials pn(x) are given by

the recurrence formula (1.1) with an+1>0 and bn # R, then there exists a
positive Boreal measure + such that [ pn] (n # Z+) is an orthonormal poly-
nomial system with respect to the measure +. If an and bn are bounded,
then the measure + is unique and the support of + is compact.
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The following result (Trace Formula) establishes the connection between
Jacobi matrices

J=\
b0

a1

0
} } }

a1

b1

a2

} } }

0
a2

b2

} } }

0
0

a3

} } }

0
0
0

} } }

} } }
} } }
} } }
} } } +

and their spectral measures.

Theorem 1 [8, 14] (see also [16]). If Supp(+)=[&1, 1] and if the
recursion coefficients [an+1] and [bn] satisfy

lim
n � �

an= 1
2 , lim

n � �
bn=0 (1.3)

and

:
�

n=0

( |an+1&an |+|bn+1&bn | )<�, (1.4)

then

:
�

n=0

[(a2
n+1&a2

n) p2
n(x)+an(bn&bn&1) pn&1(x) pn(x)]=

1
2?

- 1&x2

+$(x)

holds uniformly on all compact sets in (&1, 1). In addition, the measure + is
absolutely continuous in the open interval (&1, 1), +$(x)>0 for all x # (&1, 1),
and +$(x) is continuous in (&1, 1).

Given two periodic sequences [a0
n+1] (a0

n+1>0) and [b0
n] (b0

n # R)
(n # Z+) with period N�1, the Jacobi matrix J is called asymptotically
N-periodic (J # APN), if

lim
n � �

[ |an&a0
n |+|bn&b0

n |]=0. (1.5)

In a survey [16] P. Nevai has posed the following problem: Extend the Trace
Formula to asymptotically N-periodic Jacobi matrices. We investigate this
problem for the case N=2.

2. REPRESENTATIONS OF THE KERNELS

We assume that two periodic sequences a0
n+1>0 and b0

n (n # Z+) are
given such that

a0
n+2=a0

n (n=1, 2, ...), b0
n+2=b0

n (n=0, 1, 2, ...)
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(i.e., period N=2), and that the recurrence coefficients an+1 and bn

satisfy (1.5). We will write J # AP2 .
Denote the orthonormal polynomials with periodic recurrence coefficients

a0
n+1 and b0

n by qn(x). Then

xqn(x)=a0
n+1qn+1(x)+b0

nqn(x)+a0
nqn&1(x) (n # Z+)

q&1(x)=0, q0(x)=1.

Let

T(x)=
1
2 _q2(x)&

a0
2

a0
1& . (2.1)

The essential spectrum of the polynomials qn(x), resp. pn(x), consists of two
intervals E, where E=[x # R, &1�T(x)�1]. The set E is of the form

_:,
:+;

2
&

;&:
2

t&_ _:+;
2

+t
;&:

2
, ;& for some 0�t<1,

or in other words, if &1, 1 is the smallest and largest boundary point of E
(this can be obtained easily by a linear transformation of qn(x) resp. pn(x))
then E is of the form

E=[&1, &t] _ [t, 1] for some 0�t<1.

These facts follow from [20, 21]. The special case when the intervals touch
each other (the set [T 2(x)=1] consists of the endpoints of the intervals)
leads to sieved orthogonal polynomials (see details in [1, 9�11, 21]).

Lemma 1. If J # AP2 , then the following recurrence relation is valid,

s(x) pn(x)=:n+2 pn+2(x)+;n+1 pn+1(x)+#n pn(x)

+;n pn&1(x)+:n pn&2(x) (n # Z+) (2.2)

with boundary conditions

p&2(x)=0, p&1(x)=0, :0=:1=0, ;0=0, (2.3)

where

s(x)=2a0
1a0

2 T(x)=(x&b0
0)(x&b0

1)&(a0
1)2&(a0

2)2

:n+2=an+1an+2 , ;n=an(bn&1+bn&b0
0&b0

1) (2.4)

#n=a2
n+a2

n+1&(a0
1)2&(a0

2)2+(bn&b0
0)(bn&b0

1)
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with

lim
n � �

:n=a0
1 a0

2 , lim
n � �

;n=0, lim
n � �

#n=0. (2.5)

In fact, Lemma 1 follows from the definition of AP2 and the five-term
recurrence relation

x2pn(x)=an+1an+2 pn+2(x)+an+1(bn+bn+1) pn+1(x)

+(a2
n+a2

n+1+b2
n) pn(x)+an(bn&1+bn) pn&1(x)

+anan&1 pn&2(x)

by a direct computation.

Lemma 2. Let J # AP2 . Then for the Dirichlet kernel

Dn(t, x)= :
n

k=0

pk(t) pk(x)

the representation

[s(t)&s(x)] Dn(t, x)=:n+2[ pn+2(t) pn(x)& pn(t) pn+2(x)]

+:n+1[ pn+1(t) pn&1(x)& pn&1(t) pn+1(x)]

+;n+1[ pn+1(t) pn(x)& pn(t) pn+1(x)] (2.6)

holds. Here s(x), :n , ;n are defined by (2.4).

In fact, formula (2.6) follows from (2.2) and (2.3) by straightforward
calculations.

Lemma 3. If J # AP2 , then the following representation of the Feje� r kernel,

Fn(t, x)=
1

n+1
:
n

k=0

Dk(t, x),

is valid

(n+1)[s(t)&s(x)]2 Fn(t, x)

=!n(t, x)+!n(x, t)+Gn(t, x)+Gn(x, t), (2.7)
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where

Gn(t, x)=:2
n+2[ pn(t) pn(x)& pn+2(t) pn+2(x)]

&2[:2
n pn(t) pn(x)+:2

n+1 pn+1(t)pn+1(x)]

+:n+2:n+4 pn+4(t) pn(x)+2:n+1:n+3 pn+3(t) pn&1(x)

+:n :n+2 pn+2(t) pn&2(x)+:n+2(#n+2&#n) pn+2(t) pn(x)

&;2
n+1 pn+1(t) pn+1(x)+(:n+2;n+3+:n+3 ;n+1) pn+3(t) pn(x)

+2:n+1;n+2 pn+2(t) pn&1(x)+;n+1;n+2 pn+2(t) pn(x)

+(:n+2;n+2&2:n+1;n) pn+1(t) pn(x)

&:n+2;n+1 pn+2 (t) pn+1(x)&:n+2;n+1 pn+1(t) pn+2(x)

&:n+1;n pn(t) pn+1(x) (2.8)

and

!n(t, x)=2 :
n&1

k=0

(:2
k+2&:2

k) pk(t) pk(x)+ :
n

k=0

(;2
k+1&;2

k) pk(t) pk(x)

+2 :
n&1

k=0

:k+2(#k+2&#k) pk+2(t) pk(x)

+ :
n&2

k=0

(:k+2 ;k+3&:k+3 ;k+1) pk+3(t) pk(x)

+2 :
n&1

k=0

(:k+2 ;k+2&:k+1 ;k) pk+1(t) pk(x)

+ :
n

k=0

;k+1(#k+1&#k) pk+1(t) pk(x)

+ :
n&1

k=0

(:k+2 ;k+2&:k+1 ;k) pk(t) pk+1(x), (2.9)

where :n , ;n , #n are defined by (2.4).

Proof. By formula (2.6) one has

(n+1)[s(t)&s(x)]2 Fn(t, x)=`n(t, x)+`n(x, t), (2.10)

where

`n(t, x)= :
n

k=0

%k(t, x) (2.11)
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with

%k(t, x)=:k+2s(t) pk+2(t) pk(x)+:k+1 s(t) pk+1(t) pk&1(x)

+;k+1s(t) pk+1(t) pk(x)&:k+2pk+2(t) s(x) pk(x)

&:k+1 pk+1(t) s(x) pk&1(x)&;k+1 pk+1(t) s(x) pk(x).

The recurrence relation (2.2) yields

%k(t, x)=:k+2 :k+4 pk+4(t) pk(x)+:k+2;k+3 pk+3(t) pk(x)

+:k+2#k+2 pk+2(t) pk(x)+:k+2;k+2 pk+1(t) pk(x)

+:2
k+2 pk(t) pk(x)+:k+1:k+3 pk+3(t) pk&1(x)

+:k+1;k+2 pk+2(t) pk&1(x)+:k+1 #k+1 pk+1(t) pk&1(x)

+:k+1;k+1 pk(t) pk&1(x)+:k+3;k+1 pk+3(t) pk(x)

+;k+1;k+2 pk+2(t) pk(x)+;k+1#k+1 pk+1(t) pk(x)

+;2
k+1 pk(t) pk(x)+:k+1;k+1 pk&1(t) pk(x)

&:2
k+2 pk+2(t) pk+2(x)&:k+2;k+1 pk+2(t) pk+1(x)

&:k+2#k pk+2(t) pk(x)&:k+2 ;k pk+2(t) pk&1(x)

&:k+2;k+1 pk+1(t) pk+2(x)&;2
k+1 pk+1(t) pk+1(x)

&;k+1#k pk+1(t) pk(x)&:k+2 :k pk+2(t) pk&2(x)

&:2
k+1 pk+1(t) pk+1(x)&:k&1:k+1 pk+1(t) pk&3(x)

&;k+1;k pk+1(t) pk&1(x)&:k;k+1 pk+1(t) pk&2(x)

&:k+1;k pk+1(t) pk(x)&:k+1#k&1 pk+1(t) pk&1(x)

&:k+1;k+1 pk+1(t) pk&2(x)+:2
k+1 pk&1(t) pk&1(x).

For the calculation of `n(t, x) we regroup similar terms of the last relation.
Then `n(t, x) can be representated in the form

`n(t, x)= :
6

i=1

_i (t, x), (2.12)
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where

_1(t, x)= :
n

k=0

:2
k+2 pk(t) pk(x)+ :

n

k=0

:2
k+1 pk&1(t) pk&1(x)

& :
n

k=0

:2
k+2 pk+2(t) pk+2(x)& :

n

k=0

:2
k+1 pk+1(t) pk+1(x)

+ :
n

k=0

;2
k+1 pk(t) pk(x)& :

n

k=0

;2
k+1 pk+1(t) pk+1(x);

_2(t, x)= :
n

k=0

:k+2:k+4 pk+4(t) pk(x)& :
n

k=0

:k:k+2 pk+2(t) pk&2(x)

+ :
n

k=0

:k+1:k+3 pk+3(t) pk&1(x)& :
n

k=0

:k&1:k pk+1(t) pk&3(x);

_3(t, x)= :
n

k=0

:k+2;k+3 pk+3(t) pk(x)& :
n

k=0

:k+2;k pk+2(t) pk&1(x)

+ :
n

k=0

:k+1;k+2 pk+2(t) pk&1(x)& :
n

k=0

:k+1;k&1 pk+1(t) pk&2(x)

+ :
n

k=0

:k+3;k+1 pk+3(t) pk(x)& :
n

k=0

:k;k+1 pk+1(t) pk&2(x);

_4(t, x)= :
n

k=0

:k+2#k+2 pk+2(t) pk(x)+ :
n

k=0

:k+1#k+1 pk+1(t) pk&1(x)

+ :
n

k=0

;k+1;k+2 pk+2(t) pk(x)& :
n

k=0

:k+2#k pk+2(t) pk(x)

& :
n

k=0

;k;k+1 pk+1(t) pk&1(x)& :
n

k=0

:k+1#k&1 pk+1(t) pk&1(x);

_5(t, x)= :
n

k=0

:k+2;k+2 pk+1(t) pk(x)+ :
n

k=0

:k+1;k+1 pk(t) pk&1(x)

+ :
n

k=0

;k+1#k+1 pk+1(t) pk(x)& :
n

k=0

:k+2;k+1 pk+2(t) pk+1(x)

& :
n

k=0

;k+1#k pk+1(t) pk(x)& :
n

k=0

:k+1;k pk+1(t) pk(x);

_6(t, x)= :
n

k=0

:k+1;k+1 pk&1(t) pk(x)& :
n

k=0

:k+2;k+1 pk+1(t) pk+2(x).
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Using Abel's summation by parts and the initial conditions (2.3), it is not
difficult to show that the following formulas are valid

_1(t, x)=:2
n+2 [ pn(t) pn(x)& pn+2(t) pn+2(x)]

&2[:2
n pn(t) pn(x)+:2

n+1 pn+1(t) pn+1(x)]

&;2
n+1 pn+1(t) pn+1(x)+2 :

n&1

k=0

(:2
k+2&:2

k) pk(t) pk(x)

+ :
n

k=0

(;2
k+1&;2

k) pk(t) pk(x);

_2(t, x)=:n+2:n+4 pn+4(t) pn(x)+2:n+1:n+3 pn+3(t) pn&1(x)

+:n:n+2 pn+2(t) pn&2(x);

_3(t, x)=(:n+2;n+3+:n+3;n+1) pn+3(t) pn(x)

+2:n+1;n+2 pn+2(t) pn&1(x)+ :
n&2

k=0

[:k+2(;k+3&;k+1)

+(:k+2&:k+3) ;k+1] pk+3(t) pk(x);

_4(t, x)=:n+2(#n+2&#n) pn+2(t) pn(x)+;n+1 ;n+2 pn+2(t) pn(x)

+2 :
n&1

k=0

:k+2(#k+2&#k) pk+2(t) pk(x);

_5(t, x)=(:n+2;n+2&2:n+1 ;n) pn+1(t) pn(x)

&:n+2;n+1 pn+2(t) pn+1(x)+2 :
n&1

k=0

[(:k+2&:k+1) ;k+2

+(;k+2&;k) :k+1] pk+1(t) pk(x)

+ :
n

k=0

;k+1(#k+1&#k) pk+1(t) pk(x);

_6(t, x)=&:n+2 ;n+1 pn+1(t) pn+2(x)&:n+1 ;n pn(t) pn+1(x)

+ :
n&1

k=0

[:k+2(;k+2&;k)+(:k+2&:k+1) ;k] pk(t) pk+1(x).

The representation (2.7)�(2.9) follows from (2.10)�(2.12) and the last six
relations. Lemma 3 is completely proved.

Remark. For N=1 the representation of Fn(t, x) was given in [17, 18]
(see also [19] for N=2). Feje� r's kernel plays an important role in some
problems of summability of Fourier series in orthogonal polynomials [17, 18].

The following assertion can be inferred from Lemma 3, if we put t=x.
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Corollary 1. If J # AP2 , then

2 :
n&1

k=0

(:2
k+2&:2

k) p2
k(x)+ :

n

k=0

(;2
k+1&;2

k) p2
k(x)

+2 :
n&1

k=0

:k+2(#k+2&#k) pk(x) pk+2(x)

+3 :
n&1

k=0

(:k+2 ;k+2&:k+1;k) pk(x) pk+1(x)

+ :
n&2

k=0

(:k+2;k+3&:k+3;k+1) pk(x) pk+3(x)

+ :
n

k=0

;k+1(#k+1&#k) pk(x) pk+1(x)=Gn(x),

where

Gn(x)=(2:2
n&:2

n+2) p2
n(x)+(2:2

n+1+;2
n+1) p2

n+1(x)+:2
n+2 p2

n+2(x)

&:n+2:n+4 pn(x) pn+4(x)&2:n+1:n+3 pn&1(x) pn+3(x)

&:n:n+2 pn&2(x) pn+2(x)&:n+2(#n+2&#n) pn(x) pn+2(x)

&;n+1;n+2 pn(x) pn+2(x)&2:n+1;n+2 pn&1(x) pn+2(x)

&(:n+2;n+3+:n+3 ;n+1) pn(x) pn+3(x)

+2:n+2;n+1 pn+1(x) pn+2(x)

+(3:n+1;n&:n+2;n+2) pn(x) pn+1(x), (2.13)

where :n , ;n , and #n are defined by (2.4).

Remark. For N=1 formula (2.13) was obtained by J. Dombrowski [7].

3. TRACE FORMULA

If [ pn] is a system of orthonormal polynomials, satisfying (1.1), (1.2),
then one can introduce the associated polynomials [ p (m)

n (x)] of order m
(m # Z+) by the shifted recurrence formula

xp (m)
n (x)=an+m+1 p (m)

n+1(x)+bn+m p (m)
n (x)+an+m p (m)

n&1(x) (n # Z)

(3.1)

with boundary conditions

p (m)
&1(x)=0, p (m)

0 (x)=1. (3.2)
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We need the following result

Lemma 4 [11]. Assume that the Jacobi matrix J # AP2 . Then for every
continuous function f and for all integers k and j one has

lim
n � � | f (x) p2n+ j (x) p2n+k(x) d+(x)

=
1

4?a0
j+1a0

k+1
|

E

f (x) Sign[T $(x)]

- 1&T 2(x)

_[a0
k+1q ( j+1)

k& j+1(x)+a0
j+1q (k+1)

j&k+1(x)] dx, (3.3)

where

a0
m+k+1 q (m)

k (x)=&a0
m q (m+k+1)

&k&2 (x) (k<0). (3.4)

The next assertion gives the weak type asymptotics.

Lemma 5. Suppose that the Jacobi matrix J # AP2 . Then for every
continuous function f and for all integers k one has

lim
n � � |

E
f (x) G2n+k(x) d+(x)

=
4(a0

1 a0
2)2

? |
E

f (x) |T $(x)| - 1&T 2(x) dx

=
1
? |

E
f (x) |2x&b0

k&b0
k+1 |

_�[(a0
k+2+a0

k+1)2&(x&b0
k)(x&b0

k+1)]_
[(x&b0

k)(x&b0
k+1)&(a0

k+2&a0
k+1)2]

dx. (3.5)

Proof. Using the definition of the class AP2 and (2.5), we have

I (2)
k := lim

n � � |
E

f (x) G2n+k(x) d+(x)

= lim
n � � |

E
f (x)[:2

2n+k+2 p2
2n+k+2(x)+2:2

2n+k p2
2n+k(x)

&:2
2n+k+2 p2

2n+k(x)+2:2
2n+k+1 p2

2n+k+1(x)

&:2n+k+2:2n+k+4 p2n+k(x) p2n+k+4(x)

&2:2n+k+1:2n+k+3 p2n+k&1(x) p2n+k+3(x)

&:2n+k:2n+k+2 p2n+k&2(x) p2n+k+2(x)] d+(x).
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By (1.5), (3.3), and (3.4)

I (2)
k =(a0

k+1a0
k+2)2 1

4? |
E

f (x) Sign[T $(x)]

- 1&T 2(x)

_{ 2
a0

k+1

q (k+3)
1 (x)+

4
a0

k

q (k+2)
1 (x)+

2
a0

k+1

q (k+1)
1 (x)

&
1

a0
k+1

[q (k+1)
5 (x)+q (k+5)

&3 (x)]&
2

a0
k

[q (k)
5 (x)+q (k+4)

&3 (x)]

&
1

a0
k+1

[q (k&1)
5 (x)+q (k+3)

&3 (x)]= dx

=
(a0

k+1a0
k+2)2

4? |
E

f (x) Sign[T $(x)]

- 1&T 2(x)

_{ 2
a0

k+1

q (k+3)
1 (x)+

4
a0

k

q (k+2)
1 (x)+

2
a0

k+1

q (k+1)
1 (x)

&
1

a0
k+1

[q (k+1)
5 (x)&q (k+3)

1 (x)]&
2

a0
k

[q (k)
5 (x)&q (k+2)

1 (x)]

&
1

a0
k+1

[q (k&1)
5 (x)&q (k+1)

1 (x)]= dx.

Since (see [11])

q (m)
5 (x)=2T(x) q (m)

3 (x)&q (m)
1 (x)=[4T 2(x)&1] q (m)

1 (x),

then

I (2)
k =

(a0
k+1 a0

k+2)2

4? |
E

f (x) Sign[T $(x)]

- 1&T 2(x)

{_ 3
a0

k+1

q (k+3)
1 (x)+

6
a0

k

q (k+2)
1 (x)+

4
a0

k+1

q (k+1)
1 (x)

+
2

a0
k

q (k)
1 (x)+

1
a0

k+1

q (k&1)
1 (x)&

&4T 2(x) _ 1
a0

k+1

q (k+1)
1 (x)+

2
a0

k

q (k)
1 (x)+

1
a0

k+1

q (k&1)
1 (x)&= dx.
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It follows from the definition of the class AP2 and (3.1), (3.2), that

q (m)
1 (x)=

1
a0

m+1

(x&b0
m), q (m+2)

1 (x)=q (m)
1 (x).

So

1
a0

k+1

q (k+1)
1 (x)+

2
a0

k

q (k)
1 (x)+

1
a0

k+1

q (k&1)
1 (x)=

2
a0

k+1a0
k+2

(2x&b0
k&b0

k+1)

and

3
a0

k+1

q (k+3)
1 (x)+

6
a0

k

q (k+2)
1 (x)+

4
a0

k+1

q (k+1)
1 (x)

+
2

a0
k

q (k)
1 (x)+

1
a0

k+1

q (k&1)
1 (x)=

8
a0

k+1a0
k+2

(2x&b0
k&b0

k+1).

Consequently,

I (2)
k =

2
?

a0
k+1 a0

k+2 |
E

f (x)(2x&b0
k&b0

k+1) Sign[T $(x)] - 1&T 2(x) dx.

One can calculate the integrand. By (2.1) and (3.1) (for m=0) one obtains

2T(x)=
1

a0
k+1a0

k+2

[(x&b0
k)(x&b0

k+1)&(a0
k+1)2&(a0

k+2)2],

2T $(x)=
2x&b0

k&b0
k+1

a0
k+1a0

k+2

,

1&T 2(x)=
1

(2a0
k+1a0

k+2)2 [[(a0
k+1+a0

k+2)2&(x&b0
k)(x&b0

k+1)]

_[(x&b0
k)(x&b0

k+1)&(a0
k+1&a0

k+2)2]].

Lemma 5 is completely proved.

Corollary 2. Assume that the recurrence coefficients [an+1] and [bn]
belong to the class AP2 and that they satisfy (1.3). Then for every continuous
function f and for all integers k one has

lim
n � � |

E
f (x) G2n+k(x) d+(x)=

2
? |

E
f (x) x2

- 1&x2 dx.

The main result is the following analog of Theorem 1.
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Theorem 2. Let the Jacobi matrix J # AP2 and the recursion coefficients
an , bn satisfy

:
�

n=0

( |an+2&an |+|bn+2&bn | )<� (3.6)

and

:
�

n=0

( |an+1&an |+|bn+1&bn | )( |en |+|en+1 |)<�, (3.7)

where en=bn&1+bn&b0
0&b0

1 , limn � � en=0. Then uniformly on every
closed subset of E0 :=E"[T 2(x)=1] the Trace Formula

2 :
�

n=0

[(:2
n+2&:2

n)+
1
2

(;2
n+1&;2

n)] p2
n(x)

+ :
�

n=0

[;n+1(#n+1&#n)+3(:n+2;n+2&:n+1;n)] pn(x) pn+1(x)

+2 :
�

n=0

:n+2(#n+2&#n) pn(x) pn+2(x)

+ :
�

n=0

(:n+2;n+3&:n+3;n+1) pn(x) pn+3(x)

=
4
?

(a0
1a0

2)2 |T $(x)| - 1&T 2(x)
w(x)

.

holds, where :n , ;n , and #n are defined by (2.4).

Recall, that in our case, the measure + is absolutely continuous in E0 ,
and +$(x)=w(x) is strictly positive and continuous on E0 (see [11]).

Proof of Theorem 2. We adapt the methods of [11] to the present
situation. It is not difficult to see that from (2.4), (3.6), and (3.7) one
obtains

:
�

n=0

[|:2
n+2&:2

n |+|;2
n+1&;2

n |+|;n+1(#n+1&#n)|

+|:n+2;n+2&:n+1;n |+|:n+2(#n+2&#n)|

+|:n+2;n+3&:n+3;n+1 |]<�.
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So, the series on the left side of our assertion converges uniformly on the
closed subset K from E0 . If we denote its sum by �(x), then

lim
n � �

Gn(x)=�(x)

uniformly on K; consequently, for every continuous function f and for all
integers k one has

lim
n � � |

E
f (x) G2n+k(x) d+(x)=|

E
f (x) �(x) w(x) dx.

On the other hand, using periodicity of [a0
n+1] and [b0

n], and by Lemma 5
one obtains

lim
n � � |

E
f (x) G2n+k(x) w(x) dx=

4
?

(a0
1 a0

2)2 |
E

f (x) |T $(x)| - 1&T 2(x) dx.

This means that for x # E0

�(x) w(x)=
4
?

(a0
1 a0

2)2 |T $(x)| - 1&T 2(x)

from which the Trace Formula follows, if we use the end of the proof of
Lemma 5. This completes the proof of Theorem 2.

Corollary 3. If the recurrence coefficients satisfy

lim
n � �

an=
1
2

, :
�

n=0

|an+2&an |<�, bn=0 (n # Z+),

then the Trace Formula

:
�

n=0

(a2
n+1a2

n+2&a2
n&1 a2

n) p2
n(x)

+ :
�

n=0

an+1an+2(a2
n+3+a2

n+2&a2
n+1&a2

n) pn(x) pn+2(x)

=
1
?

x2
- 1&x2

w(x)

holds uniformly on every compact subset of E0 .
In fact, in this case

:n=an&1an , ;n=0, #n=a2
n+a2

n+1&(a0
1)2&(a0

2)2.
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Remarks. 1. In view of the assumption on the recurrence coefficients
the relation E0=(&1, 1) holds, and Corollary 3 gives a Trace Formula for
the single interval case.

2. Another Trace Formula is obtained in [11, 23].

4. EXAMPLES

1. The sieved Pollaczek polynomials.

(a) The symmetric sieved Pollaczek polynomials [12]. Let [C *
n(x; a; 2)

(a>0, *>0)] be the symmetric sieved Pollaczek polynomials of the first
kind. Then

C *
0(x; a; 2)=1,

C *
1(x; a; 2)=

x(*+a)
*

,

xC *
2n+1(x; a; 2)=

1
2

C *
2n+2(x; a; 2)+

1
2

C *
2n(x; a; 2),

xC *
2n(x; a; 2)=

1
2

n+2*
n+a+*

C *
2n+1(x; a; 2)+

1
2

n
n+a+*

C *
2n&1(x; a; 2).

If [C� *
n(x; a; 2)] is the corresponding orthonormal system, then

C *
n(x; a; 2)={?1(2*)

a+*
2&2*+1=

1�2

*1�2
n C� *

n(x; a; 2)

with

*2n=
n ! (a+*)

(n+a+*)(2*)n
, *2n+1=

n ! (a+*)
(2*)n+1

,

where, as usual,

(an)=
1(n+a)

1(a)
.
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We have

xC� *
2n+1(x; a; 2)=

1
2 �

n+1
n+a+*+1

C� *
2n+2(x; a; 2)

+
1
2 �

n+2*
n+a+*

C� *
2n(x; a; 2)

xC� *
2n(x; a; 2)=

1
2 �

n+2*
n+a+*

C� *
2n+1(x; a; 2)

+
1
2 �

n
n+a+*

C� *
2n&1(x; a; 2).

So

a2n=
1
2 �

n
n+a+*

, a2n+1=
1
2 �

n+2*
n+a+*

, bn=0. (4.1)

From (4.1) one easily finds

a2n&a2n+1 rC
1
n

,

which means that (1.4) does not hold and hence that Theorem 1 cannot be
applied. On the other hand,

a2(n+1)&a2n=O \ 1
n2+ , a2n+1&a2n+3=O \ 1

n2+ ,

which means that Corollary 3 can be applied. Note that when a=0 then
C*

n(x; a; 2)'s reduce to the C *
n(x; 2)'s of Al-Salam et al. [1], for which

Theorem 1 cannot be applied, and Corollary 3 can be applied.

(b) The nonsymmetric sieved Pollaczek polynomials ([4]; see also
[16]). Given a, b, c, * # R, we define the 2-sieved 4-parameter Pollaczek
polynomials as the characteristic polynomials associated with Jacobi
matrix J(2; a, b, c; *), where

an=�An&1 Dn

Bn&1 Bn
, bn=

Cn

Dn
(n=1, 2, ...).

Here

A2n=n+c+2*, A2n+1=1, B2n=2(n+a+c+*), B2n+1=2,

C2n=&2b, C2n+1=0, D2n=n+c+2*&1, D2n+1=1.

457TRACE FORMULA



File: DISTIL 313317 . By:CV . Date:25:02:98 . Time:14:53 LOP8M. V8.B. Page 01:01
Codes: 2190 Signs: 997 . Length: 45 pic 0 pts, 190 mm

For the 4-parameter Pollaczek polynomials see Chihara's book [5, p. 185],
whereas for the sieving process see the works [1, 4, 12]. The recurrence
coefficients associated with the above orthogonal polynomials

a2n=
1
2 �

n+c+2*&1
n+a+c+*

, a2n+1=
1
2 �

n+c+2*
n+a+c+*

,

b2n= &
b

n+a+c+*
, b2n+1=0

are not bounded variation, but it is not difficult to see that the conditions
of (3.6) and (3.7) of Theorem 2 are satisfied.

2. Orthonormal polynomial system defined by the recurrence relation
(1.1) with

an=
1
2

+
(&1)n D

n p +O \ 1
n p+1+ , bn=

(&1)n R
n p +O \ 1

n p+1+ ( p�1),

(4.2)

where D and R are constants independent of n, satisfy conditions (3.6) and
(3.7).

3. Polynomials orthogonal on two intervals [2, 3, 6, 20]. Denote

E!=[&1, &!] _ [!, 1] (0�!<1).

(a) Let

w0(x)=�x+!
x&! �

1&x
1+x

(x # E!).

In the paper [3] the polynomials

\̂n(x; !)=k� nxn+ } } } , k� n>0 (n # Z+ ; x # E!)

were introduced; they are orthonormal with respect to the weight w0(x)
on E! .

They satisfy the following three-term recurrence relation

an+1 \̂n+1(x; !)&(x+bn) \̂n(x; !)+an\̂n&1(x; !)=0

458 BORIS P. OSILENKER



File: DISTIL 313318 . By:CV . Date:25:02:98 . Time:14:53 LOP8M. V8.B. Page 01:01
Codes: 2102 Signs: 897 . Length: 45 pic 0 pts, 190 mm

with

an=
1+(&1)n !

2
(n=1, 2, ...), bn=0 (n=1, 2, ...), b0=&

1&!
2

.

Obviously, the conditions of Theorem 2 are satisfied.

(b) Denote

w( p, q)(x)={
\ 2

1&!2+
p+q

(x+:)(x2&!2) p (1&x2)q

for &1�x�&!

&\ 2
1&!2+

p+q

(x+:)(x2&!2) p (1&x2)q

for !�x�1

0 for x � E! ,

where p> &1, q>&1, &!�:�!.

Let [\ ( p, q)
n (x)] (n # Z+) be an orthogonal polynomial system on E! with

respect to the weight w( p, q)(x), where the leading coefficients of \ ( p, q)
n (x)

are equal to 1. In [2] G. I. Barkov has shown that

\ ( p, q)
2n (x)=\1&!2

2 +
n

\ 2
1&!2+

p+q

I ( p, q)
n \2x2&!2&1

1&!2 + ,

\ ( p, q)
2n+1(x)=

\ ( p, q)
2n+2(x)&m2n\ ( p, q)

2n (x)
x+:

,

m2n=
\ ( p, q)

2n+2(:)
\ ( p, q)

2n (:)
,

where I ( p, q)
n (x) are Jacobi polynomials with leading coefficient 1 orthogonal

with respect to the weight (1+x) p (1&x)q (&1�x�1). The corresponding
orthonormal polynomials [\̂ ( p, q)

n ] can be represented in the form

\̂ ( p, q)
2n (x)=(1&!2)&(2n+1)�2 2&( p+q)�2

__n! 1(n+ p+1) 1(n+q+1) 1(n+ p+q+1)
1(2n+ p+q+1) 1(2n+ p+q+2) &

1�2

\ ( p, q)
2n (x)
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and

\̂ ( p, q)
2n+1(x)=(1&!2)&(2n+1)�2 2&( p+q)�2

__n ! 1(n+ p+1) 1(n+q+1) 1(n+p+q+1)
1(2n+ p+q+1) 1(2n+ p+q+2) &

1�2

_[&m2n]&1�2 \ ( p, q)
2n+1(x),

and satisfy the following recurrence relation

x\̂ ( p, q)
n (x)=a ( p, q)

n+1 \̂ ( p, q)
n+1 (x)+b ( p, q)

n \̂ ( p, q)
n (x)+a ( p, q)

n \̂ ( p, q)
n&1 (x)

(n # Z+)

with

a ( p, q)
2n+1=- &m2n ,

a ( p, q)
2n+2=

1&!2

- &m2n
{ (n+1)(n+ p+1)(n+q+1)(n+ p+q+1)

(2n+ p+q+1)(2n+ p+q+2)2 (2n+ p+q+3)=
1�2

,

b ( p, q)
n =(&1)n :.

It is not difficult to see that the corresponding Jacobi matrix belongs to the
class AP2 .

In the case :=\!, i.e., w(x)=|x\!| (x2&!2) p (1&x2)q (2�(1&!2)) p+q

one obtains

a ( p, q)
2n+2=- 1&!2 _ (n+q+1)(n+1)

(2n+ p+q+3)(2n+ p+q+2)&
1�2

a ( p, q)
2n+1=- 1&!2 _ (n+ p+q+1)(n+ p+1)

(2n+ p+q+1)(2n+ p+q+2)&
1�2

(4.3)

bn=(&1)n !.

These sequences of recurrence coefficients do not satisfy (1.4), but they
satisfy the conditions of Theorem 2.

In particular, in the case :=!=0, i.e., w(x)=|x|2p+1 (1&x2)q we have
the generalized Chebychev polynomials, for which [13, 15] (see (4.2)
with p=1):

a ( p, q)
n =

1
2

+
Cp, q

n
(&1)n+O \ 1

n2+ , bn=0.
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